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Abstract
This paper presents a fully independent security study

of a Diebold AccuVote-TS voting machine, including its
hardware and software. We obtained the machine from a
private party. Analysis of the machine, in light of real elec-
tion procedures, shows that it is vulnerable to extremely
serious attacks. For example, an attacker who gets physi-
cal access to a machine or its removable memory card for
as little as one minute could install malicious code; mali-
cious code on a machine could steal votes undetectably,
modifying all records, logs, and counters to be consis-
tent with the fraudulent vote count it creates. An attacker
could also create malicious code that spreads automati-
cally and silently from machine to machine during normal
election activities—a voting-machine virus. We have con-
structed working demonstrations of these attacks in our
lab. Mitigating these threats will require changes to the
voting machine’s hardware and software and the adoption
of more rigorous election procedures.

1 Introduction

The Diebold AccuVote-TS and its newer relative the
AccuVote-TSx are together the most widely deployed
electronic voting platform in the United States. In the
November 2006 general election, these machines were
used in 385 counties representing over 10% of registered
voters [12]. The majority of these counties—including
all of Maryland and Georgia—employed the AccuVote-
TS model. More than 33,000 of the TS machines are in
service nationwide [11].

This paper reports on our study of an AccuVote-TS,
which we obtained from a private party. We analyzed the
machine’s hardware and software, performed experiments
on it, and considered whether real election practices would
leave it suitably secure. We found that the machine is
vulnerable to a number of extremely serious attacks that
undermine the accuracy and credibility of the vote counts
it produces.

Figure 1: The Diebold AccuVote-TS voting machine

Computer scientists have been skeptical of voting sys-
tems of this type, Direct Recording Electronic (DRE),
which are essentially general-purpose computers running
specialized election software. Experience with computer
systems of all kinds shows that it is exceedingly difficult
to ensure the reliability and security of complex software
or to detect and diagnose problems when they do occur.
Yet DREs rely fundamentally on the correct and secure
operation of complex software programs. Simply put,
many computer scientists doubt that paperless DREs can
be made reliable and secure, and they expect that any
failures of such systems would likely go undetected.

Previous security studies of DREs affirm this skepti-
cism (e.g., [7, 18, 22, 30, 39]). Kohno, Stubblefield, Ru-
bin, and Wallach studied a leaked version of the source
code for parts of the Diebold AccuVote-TS software and
found many design errors and vulnerabilities [22]. Hursti
later examined the hardware and compiled firmware of
AccuVote-TS and TSx systems and discovered problems
with the software update mechanism that could allow ma-
licious parties to replace the programs that operate the



machines [18]. Our study confirms these results by build-
ing working demonstrations of several previously reported
attacks, and it extends them by describing a variety of
serious new vulnerabilities.

Main Findings The main findings of our study are:

1. Malicious software running on a single voting ma-
chine can steal votes with little risk of detection. The
malicious software can modify all of the records, au-
dit logs, and counters kept by the voting machine,
so that even careful forensic examination of these
records will find nothing amiss. We have constructed
demonstration software that carries out this vote-
stealing attack.

2. Anyone who has physical access to a voting machine,
or to a memory card that will later be inserted into a
machine, can install said malicious software using a
simple method that takes as little as one minute. In
practice, poll workers and others often have unsuper-
vised access to the machines.

3. AccuVote-TS machines are susceptible to voting-
machine viruses—computer viruses that can spread
malicious software automatically and invisibly from
machine to machine during normal pre- and post-
election activity. We have constructed a demonstra-
tion virus that spreads in this way, installing our
demonstration vote-stealing program on every ma-
chine it infects. Our demonstration virus spreads via
the memory cards that poll workers use to transfer
ballots and election results, so it propagates even if
the machines are not networked.

4. While some of these problems can be eliminated
by improving Diebold’s software, others cannot be
remedied without replacing the machines’ hardware.
Changes to election procedures would also be re-
quired to ensure security.

The details of our analysis appear below, in the main body
of this paper.

Given our findings, we believe urgent action is needed
to address these problems. We discuss potential mitigation
strategies below in Section 5.

The machine we obtained came loaded with version
4.3.15 of the Diebold BallotStation software that runs the
machine during an election.1 This version was deployed
in 2002 and certified by the National Association of State
Election Directors (NASED) [15]. While some of the prob-
lems we identify in this report may have been remedied in
subsequent software releases (current versions are in the

1The behavior of our machine conformed almost exactly to the be-
havior specified by the source code to BallotStation version 4.3.1, which
leaked to the public in 2003.

4.6 series), others are architectural in nature and cannot
easily be repaired by software changes. In any case, subse-
quent versions of the software should be assumed insecure
until fully independent examination proves otherwise.

Though we studied a specific voting technology, we ex-
pect that a similar study of another DRE system, whether
from Diebold or another vendor, would raise similar con-
cerns about malicious code injection attacks and other
problems. We studied the Diebold system because we had
access to it, not because it is necessarily less secure than
competing DREs. All DREs face fundamental security
challenges that are not easily overcome.

Despite these problems, we believe that it is possible,
at reasonable cost, to build a DRE-based voting system—
including hardware, software, and election procedures—
that is suitably secure and reliable. Such a system would
require not only a voting machine designed with more care
and attention to security, but also an array of safeguards,
including a well-designed voter-verifiable paper audit trail
system, random audits and forensic analyses, and truly
independent security review.2

Outline The remainder of this paper is structured as fol-
lows. Section 2 describes several classes of attacks against
the AccuVote-TS machine as well as routes for injecting
malicious code. Section 3 discusses the machine’s design
and its operation in a typical election, focusing on design
mistakes that make attacks possible. Section 4 details our
implementation of demonstration attacks that illustrate the
security problems. Section 5 examines the feasibility of
several strategies for mitigating all of these problems. Sec-
tion 6 outlines prior research on the AccuVote system and
DREs more generally. Finally, Section 7 offers concluding
remarks.

2 Attack Scenarios

Elections that rely on Diebold DREs like the one we stud-
ied are vulnerable to several serious attacks. Many of these
vulnerabilities arise because the machine does not even
attempt to verify the authenticity of the code it executes.
In this section we describe two classes of attacks—vote
stealing and denial-of-service [20]—that involve injecting
malicious code into the voting machine. We then outline
several methods by which code can be injected and discuss
the difficulty of removing malicious code after a suspected
attack.

2Current testing agencies are often referred to as “independent testing
agencies” (ITAs), but “independent” is a misnomer, as they are paid by
and report to the voting machine vendor.
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2.1 Classes of Attacks

2.1.1 Vote-Stealing Attacks

The AccuVote-TS machine we studied is vulnerable to
attacks that steal votes from one candidate and give them
to another. Such attacks can be carried out without leav-
ing any evidence of fraud in the system’s logs. We have
implemented a demonstration attack to prove that this is
possible; it is described in Section 4.2.

To avoid detection, a vote-stealing attack must transfer
votes from one candidate to another, leaving the total
number of votes unchanged so that poll workers do not
notice any discrepancy in the number of votes reported.
Attacks that only add votes or only subtract votes would
be detected when poll workers compared the total vote
count to the number of voters who signed in at the desk.3

The machine we studied maintains two records of each
vote—one in its internal flash memory and one on a re-
movable memory card. These records are encrypted, but
the encryption is not an effective barrier to a vote-stealing
attack because the encryption key is stored in the voting
machine’s memory where malicious software can easily
access it. Malicious software running on the machine
would modify both redundant copies of the record for
each vote it altered. Although the voting machine also
keeps various logs and counters that record a history of
the machine’s use, a successful vote-stealing attack would
modify these records so they were consistent with the
fraudulent history that the attacker was constructing. In
the Diebold DRE we studied, these records are stored in or-
dinary flash memory, so they are modifiable by malicious
software.

Such malicious software can be grafted into the Ballot-
Station election software (by modifying and recompiling
BallotStation if the attacker has the BallotStation source
code, or by modifying the BallotStation binary), it can
be delivered as a separate program that runs at the same
time as BallotStation, it can be grafted into the operating
system or bootloader, or it can occupy a virtualized layer
below the bootloader and operating system [21]. The ma-
chine contains no security mechanisms that would detect a
well designed attack using any of these methods. However
it is packaged, the attack software can modify each vote as
it is cast, or it can wait and rewrite the machine’s records
later, as long as the modifications are made before the
election is completed.

The attack code might be constructed to modify the ma-
chine’s state only when the machine is in election mode
and avoid modifying the state when the machine is per-

3It might be possible to subtract a few votes without detection (if poll
workers interpret the missing votes as voters who did not vote in that
race) or to add a few votes to compensate for real voters who did not cast
ballots; but in any case transferring votes from one candidate to another
is a more effective attack.

forming other functions such as pre-election logic and
accuracy testing. The code could also be programmed to
operate only on election days. (Elections are often held
according to a well-known schedule—for example, U.S.
presidential and congressional elections are held on the
Tuesday following the first Monday of November, in even-
numbered years.) Alternatively, it could be programmed
to operate only on certain election days, or only at certain
times of day.

By these methods, malicious code installed by an adver-
sary could steal votes with little chance of being detected
by election officials.4 Vote counts would add up correctly,
the total number of votes recorded on the machine would
be correct, and the machine’s logs and counters would be
consistent with the results reported—but the results would
be fraudulent.

2.1.2 Denial-of-Service Attacks

Denial-of-service (DoS) attacks aim to make voting ma-
chines unavailable on election day or to deny officials ac-
cess to the vote tallies when the election ends [20, 28, 3].
It is often known in advance that voters at certain precincts,
or at certain times, will vote disproportionately for one
party or candidate. A targeted DoS attack can be designed
to distort election results or to spoil an election that ap-
pears to be favoring one party or candidate. Several kinds
of DoS attacks are practical on the AccuVote-TS system
because of the ease with which malicious code may be
executed.

One style of DoS attack would make voting machines
unavailable on election day. For example, malicious code
could be programmed to make the machine crash or mal-
function at a pre-programmed time, perhaps only in cer-
tain polling places. In an extreme example, an attack
could strike on election day, perhaps late in the day, and
completely wipe out the state of the machine by erasing
its flash memory. This would destroy all records of the
election in progress, as well as the bootloader, operating
system, and election software. The machine would refuse
to boot or otherwise function. The machine would need
to be serviced by a technician to return it to a working
state. If many machines failed at once, available techni-
cians would be overwhelmed. Even if the machines were
repaired, all records of the current election would be lost.
(We have created a demonstration version of this attack,
which is described below in Section 4.4.) A similar style
of DoS attack would try to spoil an election by modifying
the machine’s vote counts or logs in a manner that would
be easy to detect but impossible to correct, such as adding
or removing so many votes that the resulting totals would

4Officials might try to detect such an attack by parallel testing. As
we describe in Section 5.3, an attacker has various countermeasures to
limit the effectiveness of such testing.
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be obviously wrong. A widespread DoS attack of either
style could require the election to be redone.

2.2 Injecting Attack Code

To carry out these attacks, the attacker must somehow
install his malicious software on one or more voting ma-
chines. If he can get physical access to a machine for
as little as one minute, he can use attacks discovered by
Hursti [18] to install the software manually. The attacker
can also install a voting machine virus that spreads to other
machines, allowing him to commit widespread fraud even
if he only has physical access to one machine or memory
card.

2.2.1 Direct Installation

An attacker with physical access to a machine would have
at least three methods of installing malicious software.
The first is to create an EPROM chip containing a program
that will install the attack code into the machine’s flash
memory, and then to open the machine, install the chip on
its motherboard, and reboot from the EPROM.5

The second method is to exploit a back door feature in
Diebold’s code, first discovered by Hursti. This method al-
lows the attacker to manually install attack software from a
memory card. When the machine boots, it checks whether
a file named explorer.glb exists on the removable
memory card. If such a file is present, the machine boots
into Windows Explorer rather than Diebold’s BallotSta-
tion election software. An attacker could insert a memory
card containing this file, reboot the machine, and then use
Explorer to copy the attack files onto the machine or run
them directly from the card. [18]

The third method exploits a service feature of the ma-
chine’s bootloader, also discovered by Hursti. On startup,
the machine checks the removable memory card for a
file named fboot.nb0. If this file exists, the machine
replaces the bootloader code in its on-board flash mem-
ory with the file’s contents. An attacker could program
a malicious bootloader, store it on a memory card as
fboot.nb0, and reboot the machine with this card in-
serted, causing the Diebold bootloader to install the ma-
licious software [18]. (A similar method would create a
malicious operating system image.)

The first method requires the attacker to remove several
screws and lift off the top of the machine to get access to
the motherboard and EPROM. The other methods only
require access to the memory card slot and power button,
which are both behind a locked door on the side of the

5When the machine is rebooted, it normally emits a musical chime
that might be noticed during a stealth attack; but this sound can be
suppressed by plugging headphones (or just a headphone connector) into
the machine’s headphone jack.

machine.6 The lock is easily picked—one member of our
group, who has modest locksmithing skills, can pick the
lock consistently in less than 10 seconds. Moreover, in
their default configuration, all AccuVote-TS machines can
be opened with the same key [4], and copies of this key are
not difficult to obtain. The particular model of key that the
AccuVote-TS uses is identified by an alphanumeric code
printed on the key. A Web search for this code reveals that
this exact key is used widely in office furniture, jukeboxes,
and hotel mini bars, and is for sale at many online retailers.
We purchased copies of the key from several sources and
confirmed that they all can open the machine.

A poll worker, election official, technician, or other
person who had private access to a machine for as little
as one minute could use these methods with little risk
of detection. Poll workers often do have such access;
for instance, in a widespread practice called “sleepovers,”
machines are sent home with poll workers the night before
the election [35].

2.2.2 Voting Machine Viruses

Rather than injecting code into each machine directly, an
attacker could create a computer virus that would spread
from one voting machine to another. Once installed on a
single “seed” machine, the virus would spread to other ma-
chines by methods described below, allowing an attacker
with physical access to one machine (or card) to infect a
potentially large population of machines. The virus could
be programmed to install malicious software, such as a
vote-stealing program or denial-of-service attack, on every
machine it infected.

To prove that this is possible, we constructed a demon-
stration virus that spreads itself automatically from ma-
chine to machine, installing our demonstration vote-
stealing software on each infected system. Our demonstra-
tion virus, described in Section 4.3, can infect machines
and memory cards. An infected machine will infect any
memory card that is inserted into it. An infected mem-
ory card will infect any machine that is powered up or
rebooted with the memory card inserted. Because cards
are transferred between machines during vote counting
and administrative activities, the infected population will
grow over time.

Diebold delivers software upgrades to the machines
via memory cards: a technician inserts a memory card
containing the updated code and then reboots the machine,
causing the machine’s bootloader to install the new code
from the memory card. This upgrade method relies on the
correct functioning of the bootloader, which is supposed
to copy the upgraded code from the memory card into
the machine’s flash memory. But if the bootloader is

6The locked door must be opened in order to remove one of the
screws holding the machine’s top on.
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already infected by a virus, then the virus can make the
bootloader behave differently. For example, the bootloader
could pretend to install the updates as expected but instead
secretly propagate the virus onto the memory card. If the
technician later used the same memory card to “upgrade”
other machines, he would in fact be installing the virus on
them. Our demonstration virus illustrates these spreading
techniques.

Memory cards are also transferred between machines
in the process of transmitting election definition files to
voting machines before an election. According to Diebold,
“Data is downloaded onto the [memory] cards using a few
[AccuVote] units, and then the stacks of [memory] cards
are inserted into the thousands of [AccuVote] terminals
to be sent to the polling places.” ([10], p. 13) If one of
the few units that download the data is infected, it will
transfer the infection via the “stacks of [memory] cards”
into many voting machines.

2.3 Difficulty of Recovery

If a voting machine has been infected with malicious code,
or even if infection is suspected, it is necessary to dis-
infect the machine. The only safe way to do this is to
put the machine back into a known-safe state, by, for ex-
ample, overwriting all of its stable storage with a known
configuration.

This is difficult to do reliably. We cannot depend on
the normal method for installing firmware upgrades from
memory cards, because this method relies on the correct
functioning of the bootloader, which might have been
tampered with by an attacker. There is no foolproof way
to tell whether an update presented in this way really has
been installed safely.

The only assured way to revert the machine to a safe
state is to boot from EPROM using the procedure de-
scribed in Section 3. This involves making an EPROM
chip containing an update tool, inserting the EPROM chip
into the motherboard, setting the machine to boot from the
chip, and powering it on. On boot, the EPROM-based up-
dater would overwrite the on-board flash memory, restor-
ing the machine to a known state. Since this process
involves the insertion (and later removal) of a chip, it
would probably require a service technician to visit each
machine.

If the disinfection process only reinstalled the software
that was currently supposed to be running on the machines,
then the possibility of infection by malicious code would
persist. Instead, the voting machine software software
should be modified to defend against installation and viral
spreading of unauthorized code. We discuss in Section 5
what software changes are possible and which attacks can
be prevented.

3 Design and Operation of the Machine

Before presenting the demonstration attacks we imple-
mented, we will first describe the design and operation of
the AccuVote-TS machine and point out design choices
that have led to vulnerabilities.

3.1 Hardware

The machine (shown in Figure 1) interacts with the user
via an integrated touchscreen LCD display. It authenti-
cates voters and election officials using a motorized smart
card reader, which pulls in cards after they are inserted
and ejects them when commanded by software. On the
right side of the machine is a headphone jack and key-
pad port for use by voters with disabilities, and a small
metal door with a lightweight lock of a variety commonly
used in desk drawers and file cabinets. Behind this door
is the machine’s power switch, a keyboard port, and two
PC Card slots, one containing a removable flash memory
card and the other optionally containing a modem card
used to transfer ballot definitions and election results. The
machine is also equipped with a small thermal roll printer
for printing records of initial and final vote tallies.

Internally, the machine’s hardware closely resembles
that of a laptop PC or a Windows CE hand-held device.
The motherboard, shown in Figure 2, includes a 133 MHz
SH-3 RISC processor, 32 MB of RAM, and 16 MB of
flash storage. The machine’s power supply can switch to a
built-in rechargeable battery in case power is interrupted.

In normal operation, when the machine is switched
on, it loads a small bootloader program from its on-board
flash memory. The bootloader loads the operating system—
Windows CE 3.0—from flash, and then Windows starts the
Diebold BallotStation application, which runs the election.
Unfortunately, the design allows an attacker with physical
access to the inside of the machine’s case to force it to run
code of her choice [29].

A set of two switches and two jumpers on the moth-
erboard controls the source of the bootloader code that
the machine runs when it starts. On reset, the processor
begins executing at address 0xA0000000. The switches
and jumpers control which of three storage devices—the
on-board flash memory, an EPROM chip in a socket on
the board, or a proprietary flash memory module in the
“ext flash” slot—is mapped into that address range. A table
printed on the board lists the switch and jumper configu-
rations for selecting these devices. The capability to boot
from a removable EPROM or flash module is useful for
initializing the on-board flash when the machine is new or
for restoring the on-board flash’s state if it gets corrupted,
but, as we discussed in Section 2, it could also be used by
an attacker to install malicious code.

When we received the machine, the EPROM socket was
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Figure 2: The AccuVote-TS motherboard incorporates a (A) HITACHI SUPERH SH7709A 133 MHZ RISC MICRO-
PROCESSOR, (B) HITACHI HD64465 WINDOWS CE INTELLIGENT PERIPHERAL CONTROLLER, two (C) INTEL
STRATA-FLASH 28F640 8 MB FLASH MEMORY CHIPS, two (D) TOSHIBA TC59SM716FT 16 MB SDRAM
CHIPS, and a socketed (E) M27C1001 128 KB ERASABLE PROGRAMMABLE READ-ONLY MEMORY (EPROM). A
(F) PRINTED TABLE lists jumper settings for selecting the boot device from among the EPROM, on-board flash, or “ext
flash,” presumably an external memory inserted in the (G) “FLASH EXT” SLOT.

Connectors on the motherboard attach to the (H) TOUCH SENSITIVE LCD PANEL, (I) THERMAL ROLL PRINTER, and
(J) SECURETECH ST-20F SMART CARD READER/WRITER, and receive power from the (K) POWER SUPPLY and
(L) BATTERY, which are managed by a (M) PIC MICROCONTROLLER. An (N) IRDA TRANSMITTER AND RECEIVER,
(O) SERIAL KEYPAD CONNECTOR, and (P) HEADPHONE JACK are accessible through holes in the machine’s case. A
(Q) POWER SWITCH, (R) PS/2 KEYBOARD PORT, and two (S) PC CARD SLOTS can be reached by opening a locked
metal door, while a (T) RESET SWITCH and (U) PS/2 MOUSE PORT are not exposed at all. An (V) INTERNAL SPEAKER
is audible through the case.
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occupied by a 128 KB EPROM containing a bootloader
that was older than, but similar to, the bootloader located
in the on-board flash. The bootloader contained in the
EPROM displays a build date of June 22, 2001 whereas
the bootloader contained in the on-board flash displays
June 7, 2002. The machine came configured to boot using
the on-board flash memory. On our machine, the on-
board flash memory is divided into three areas: a 128 KB
bootloader, a 3.3 MB GZIP-ed operating system image,
and a 10 MB file system partition.

3.2 Boot Process

When the machine is booted, the bootloader copies itself
to RAM and initializes the hardware. Then it looks for a
memory card in the first PC Card slot, and if one is present,
it searches for files on the card with special names. If it
finds a file called fboot.nb0, it assumes that this file
contains a replacement bootloader, and it copies the con-
tents of this file to the bootloader area of the on-board flash
memory, overwriting the current bootloader. If it finds a
file called nk.bin, it assumes that this file contains a re-
placement operating system image in Windows CE Binary
Image Data Format [27], and it copies it to the OS area
of the on-board flash, overwriting the current OS image.
Finally, if it finds a file called EraseFFX.bsq, it erases
the entire file system area of the flash. The bootloader
does not verify the authenticity of any of these files in any
way, nor does it ask the user to confirm any of the changes.
As Hursti [18] suggests, these mechanisms can be used to
install malicious code.

If none of these files are present, the bootloader pro-
ceeds to uncompress the operating system image stored in
on-board flash and copy it to RAM, then it jumps to the
entry point of the operating system kernel. The operating
system image is a kind of archive file that contains an
entire Windows CE 3.0 installation, including the kernel’s
code, the contents of the Windows directory, the initial
contents of the Windows registry, and information about
how to configure the machine’s file system.

When Windows starts, the kernel runs the process
Filesys.exe, which in turn unpacks the registry and
runs the programs listed in the HKEY LOCAL MACHINE\
Init registry key [26]. On our machine, these pro-
grams are the Debug Shell shell.exe, the Device
Manager device.exe, the Graphics, Windowing, and
Events Subsystem gwes.exe, and the Task Manager
taskman.exe. This appears to be a standard registry
configuration [25].

The Device Manager is responsible for mounting the
file systems. The 10MB file system partition on the on-
board flash is mounted at \FFX. This partition appears
to use the FlashFX file system, a proprietary file system
from Datalight, Inc [8]. The memory card, if it is present,

is mounted at \Storage Card, and may use the FAT
or FAT32 file system. The root file system, mounted at \,
is stored in RAM rather than nonvolatile memory, which
causes any files written to it to disappear when the machine
is rebooted or otherwise loses power. This design could be
leveraged by an attacker who wished to use the file system
for temporarily storing data or malicious code without
leaving evidence of these activities.

Diebold has customized taskman.exe so that it au-
tomatically launches the BallotStation application, \FFX\
Bin\BallotStation.exe. Another customization
causes taskman.exe to behave differently depend-
ing on the contents of any memory cards in the PC
Card slots. If a memory card containing a file called
explorer.glb is present at start-up, taskman.exe
will invoke Windows Explorer instead of BallotStation.
Windows Explorer would give an attacker access to the
Windows Start menu, control panels, and file system, as on
an ordinary Windows CE machine. The, taskman.exe
process also searches the memory card for files with names
ending in .ins [18]. These files are simple scripts in
a Diebold-proprietary binary format that automate the
process of updating and copying files. Like the spe-
cial files that the bootloader recognizes, taskman.exe
accepts explorer.glb without authentication of any
kind. While taskman.exe requests confirmation from
the user before running each .ins script, we found multi-
ple stack-based buffer overflows in its handling of these
files. This suggests that a malformed .ins file might be
able to bypass the confirmation and cause the machine to
execute malicious code.

3.3 Software and Election Procedures

All of the machine’s voting-related functions are imple-
mented by BallotStation, a user-space Windows CE ap-
plication. BallotStation operates in one of four modes:
Pre-Download, Pre-Election Testing, Election, and Post-
Election. Each corresponds to a different phase of the
election process. Here we describe the software’s opera-
tion under typical election procedures. Our understand-
ing of election procedures is drawn from a number of
sources [34, 13, 36, 40] and discussions with election
workers from several states. Actual procedures vary some-
what from place to place, and many polling places add
additional steps to deal with multiple voter populations
(e.g., different parties or electoral districts) and other com-
plicating factors. We omit these details in our description,
but we have considered them in our analysis and, except
where noted below, they do not affect the results.

At any given time, the machine’s mode is deter-
mined by the contents of the currently-inserted memory
card. Specifically, the current election mode is stored
in the header of the election results file, \Storage
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Card\CurrentElection\election.brs. When
one memory card is removed and another is inserted, the
machine immediately transitions to the mode specified by
the card. In addition, if the machine is rebooted, when Bal-
lotStation restarts it will return to the mode specified by
the current card. As a result, if a machine is powered off
while an election is taking place, it will return to Election
mode when it is turned back on.

3.3.1 Election Setup

Typically, the voting machines are stored by the local gov-
ernment or the voting machine vendor in a facility with
some degree of access control. Before the election (some-
times the night before, or in other cases the same morn-
ing) the machines are delivered to polling places where
they are set up and prepared by poll workers. Prior to
the election, poll workers may configure BallotStation by
inserting a memory card containing a ballot description—
essentially, a list of races and candidates for the current
election. If, instead, a card containing no recognizable
election data is inserted into the machine, BallotStation
enters Pre-Download mode. In this mode, the machine can
download a ballot definition by connecting to a Windows
PC running Diebold’s GEMS server software.

After election definitions have been installed, Ballot-
Station enters Pre-Election Testing mode. Among other
functions, Pre-Election Testing mode allows poll workers
to perform so-called “logic and accuracy” (L&A) testing.
During L&A testing, poll workers put the machine into a
simulation mode where they can cast several test votes and
then tally them, checking that the tally is correct. These
votes are not counted in the actual election.

After any L&A testing is complete, the poll workers
put the machine into Election mode. The software prints
a “zero tape” which tallies the votes cast so far. Since
no votes have been cast, all tallies should be zero. Poll
workers check that this is the case and then sign the zero
tape and save it.

3.3.2 Voting

When a voter arrives at the polling place, she checks in at
the front desk, where poll workers give her a “voter card,”
a special smart card that signifies that she is entitled to
cast a vote.7 The voter inserts her voter card into a voting
machine, which validates the card. The machine then
presents a user interface that allows the voter to express
her vote by selecting candidates and answering questions.
After making and confirming her selections, the voter
pushes a button on the user interface to cast her vote. The

7Kohno et al. found numerous vulnerabilities and design flaws in
BallotStation’s smart card authentication scheme [22], which remain
uncorrected in the machine we studied.

machine modifies the voter card, marking it as invalid, and
then ejects it. After leaving the machine, the voter returns
the now-invalid voter card to the poll workers, who may
re-enable it for use by another voter.

3.3.3 Post-Election Activities

At the end of the election, poll workers insert an “Ender
Card” to tell the voting software to stop the election and
enter Post-Election Mode.8 Poll workers can then use the
machine to print a “result tape” showing the final vote
tallies. The poll workers check that the total number of
votes cast is consistent with the number of voters who
checked in at the front desk. Assuming no discrepancy,
the poll workers sign the result tape and save it.

After the result tape is printed, the election results
are transferred to the central tabulator, a PC running the
GEMS software. Like the ballot definitions, the election
results may be transferred over a local area network, a
phone line, or a serial cable. Once results from all ma-
chines have reached the central tabulator, the tabulator can
add up the votes and report a result for the election.

For convenience, it is also possible to “accumulate” the
results from several machines into a single AccuVote-TS
voting machine, which can then transmit the accumulated
results to the central tabulator in a single step. To accu-
mulate results, one machine is put into accumulator mode,
and then the memory cards from other machines are in-
serted (in sequence) into the accumulator machine, which
reads the election results and combines them into a single
file that will be transferred to the central tabulator or used
as an input to further accumulation steps.

If a recount is ordered, the result tapes are rechecked
for consistency with voter check-in data, the result tapes
are checked for consistency with the results stored on the
memory cards, and the tabulator is used again to sum up
the results on the memory cards. Further investigation may
examine the state stored on memory cards and a machine’s
on-board file system, such as the machine’s logs, to look
for problems or inconsistencies.

4 Implementing Demonstration Attacks

To confirm our understanding of the vulnerabilities in
the Diebold AccuVote-TS system, and to demonstrate the
severity of the attacks that they allow, we constructed
demonstration implementations of several of the attacks
described above and tested them on the machine. We
are not releasing the software code for our demonstration
attacks to the public at present; however, a video showing

8They can also use a “Supervisor Card” for this purpose. Supervisor
cards enable access to extra setup and administrative operations in pre-
and post-election modes.
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some of our demonstration attacks in operation is available
online at http://itpolicy.princeton.edu/voting.

4.1 Backup and Restore
As a prerequisite to further testing, we developed a method
for backing up and restoring the complete contents of the
machine’s on-board flash memory. This allowed us to per-
form experiments and develop other demonstration attacks
without worrying about rendering the machine inoperable,
and it ensured that we could later restore the machine to
its initial state for further testing and demonstrations.

We began by extracting the EPROM chip from its socket
on the motherboard and reading its 128 KB contents with
a universal EPROM programmer. We then disassembled
the bootloader contained on the chip using IDA Pro Ad-
vanced [9], which supports the SH-3 instruction set. Next,
we created a patched version of the EPROM bootloader
that searches any memory card9 in the first PC Card slot
for files named backup.cmd and flash.img. If it
finds a file named backup.cmd, it writes the contents
of the on-board flash to the first 16 MB of the memory
card, and if it finds a file named flash.img, it replaces
the contents of the on-board flash with the contents of that
file. We programmed our modified bootloader into a new,
standard, 128 KB EPROM chip and inserted it into the
motherboard in place of the original chip. We configured
the machine to boot using the code in the chip instead of
the normal bootloader in its on-board flash memory, as
described in Section 3.

4.2 Stealing Votes
Several of the demonstration attacks that we have imple-
mented involve installing code onto AccuVote-TS ma-
chines that changes votes so that, for a given race, a fa-
vored candidate receives a specified percentage of the
votes cast on each affected machine. Since any attacks
that significantly alter the total number of votes cast can
be detected by election officials, our demonstration soft-
ware steals votes at random from other candidates in the
same race and gives them to the favored candidate. The
software switches enough votes to ensure that the favored
candidate receives at least the desired percentage of the
votes cast on each compromised voting machine.

Election results (i.e., the record of votes cast) are stored
in files that can be modified by any program running on
the voting machine. The primary copy of the election
results is stored on the memory card at \Storage
Card\CurrentElection\election.brs
and a backup copy is stored in the machine’s on-board

9While Diebold sells special-purpose memory cards for use in the
machine, we were able to substitute a CompactFlash card (typically used
in digital cameras) and a CompactFlash-to-PC Card adapter.

flash memory at \FFX\AccuVote-TS
\BallotStation\CurrentElection\election.
brs. Our software modifies both of these files.

Our demonstration vote-stealing software is imple-
mented as a user-space Windows CE application writ-
ten in C++ that runs alongside Diebold’s BallotStation
application. Since our software runs invisibly in the back-
ground, ordinary users of BallotStation would not notice
its presence. It is pre-programmed with three parameters
hard-coded into the binary: the name of the race to rig,
the name of the candidate who is supposed to win, and the
minimum percentage of the vote that that candidate is to
receive.

Alternatively, an attacker could create a graphical user
interface that allows more immediate, interactive control
over how votes would be stolen. We have also created a
demonstration of this kind of attack. In practice, a real
attacker would more likely design a vote-stealing program
that functioned invisibly, without a user interface.

Our demonstration vote-stealing applications can be
generalized to steal votes on behalf of a particular party
rather than a fixed candidate, to steal votes only in certain
elections or only at certain dates or times, to steal votes
only or preferentially from certain parties or candidates, to
steal a fixed fraction of votes rather than trying to ensure
a fixed percentage result, to randomize the percentage of
votes stolen, and so on. Even if the attacker knows nothing
about the candidates or parties, he may know that he wants
to reduce the influence of voters in certain places. He can
do this by creating malicious code that randomly switches
a percentage of the votes, and installing that code only
in those places. Any desired algorithm can be used to
determine which votes to steal and to which candidate or
candidates to transfer the stolen votes.

Every time a new memory card is inserted into the ma-
chine, our demonstration vote-stealing software looks for
an election definition file on the card located at \Storage
Card\CurrentElection\election.edb and, if
one is present, determines whether the current election
contains a race it is supposed to rig. If no such race is
found, the software continues to wait. If a target race is
found, it searches that race for the name of the favored
candidate. Upon finding that the preferred candidate is on
the ballot, the software proceeds to poll the election result
files every 15 seconds to see if they have been changed.

If the demonstration vote-stealing software successfully
opens the result files during one of its polling attempts,
it first checks the result files’ headers to see whether the
machine is in Election mode. If not, the attack software
does not change any votes. This feature ensures that the
software would not be detected during Logic and Accuracy
testing, which occurs when the machine is in Pre-Election
Testing mode. The software could be further enhanced so
that it would only change votes during a specified period
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on election day, or so that it would only change votes in the
presence or absence of a “secret knock.” A secret knock is
a distinctive sequence of actions, such as touching certain
places on the screen, that an attacker executes in order to
signal malicious software to activate or deactivate itself.

If the machine is in election mode and the demonstra-
tion vote-stealing software successfully opens the result
files, then the software checks whether any new ballots
have been cast since the last time it polled the files. For
each new ballot cast, the software determines whether the
race being rigged is on that ballot, and if so, determines
whether the corresponding result record contains a vote
for the favored candidate or for an opponent. The software
maintains a data structure that keeps track of the location
of every result record that contains a vote for an opponent
of the favored candidate so that it can come back later and
change some of those records if necessary. Since each re-
sult record is only labeled with the ID number of the ballot
to which it corresponds, the software must look up each
record’s ballot ID in the election definition file in order to
determine which candidates the votes in the record are for.

Once it has parsed any newly cast ballots, the software
switches the minimum number of votes necessary to en-
sure that the favored candidate gets at least the desired
percentage of the vote. The vote-stealing software chooses
which votes to switch by selecting entries at random from
its data structure that tracks votes for the opponents of
the favored candidate. After the necessary changes have
been made to the result files, the software closes the files,
resumes the BallotStation process, and continues to wait
in the background.

The steps described above are all that is necessary to
alter every electronic record of the voters’ intent that an
AccuVote-TS machine produces. Several of the machine’s
supposed security features do not impede this attack. The
so-called “protective counter,” supposedly an unalterable
count of the total number of ballots ever cast on the ma-
chine, is irrelevant to this attack because the vote-stealing
software does not change the vote count.10 The machine’s
audit logs are equally irrelevant to this attack because
the only record they contain of each ballot cast is the log
message “Ballot cast.” Furthermore, the fact that election
results are stored redundantly in two locations is not an
impediment because the vote-stealing software can mod-
ify both copies. Finally, as discussed in Section 2, the fact
that the election results are encrypted does not foil this
attack.

10In any event, the “protective counter” is simply an integer stored
in an ordinary file, so an attack that needed to modify it could do so
easily [22].

4.3 Demonstration Voting Machine Virus

In addition to our demonstration vote-stealing attacks, we
have developed a voting machine virus that spreads the
vote-stealing code automatically and silently from ma-
chine to machine. The virus propagates via the removable
memory cards that are used to store the election defini-
tion files and election results, and for delivering firmware
updates to the machines. It exploits the fact, discovered
by Hursti [18], that when the machine boots, the Diebold
bootloader will install any code found on the removable
memory card in a file with the special name fboot.nb0.
As a result, an attacker could infect a large population of
machines while only having temporary physical access to
a single machine or memory card.

Our demonstration virus takes the form of a malicious
bootloader that infects a host voting machine by replacing
the existing bootloader in the machine’s on-board flash
memory. Once installed, the virus deploys our demon-
stration vote-stealing software and copies itself to every
memory card that is inserted into the infected machine.
If those cards are inserted into other machines, those ma-
chines can become infected as well.

The cycle of infection proceeds as follows. When the
virus is carried on a memory card, it resides in a 128 KB
bootloader image file named fboot.nb0. This file con-
tains both the malicious replacement bootloader code and
a Windows CE executable application that implements the
demonstration vote-stealing application. The vote-stealing
executable is stored in a 50 KB region of the bootloader
file that would normally be unused and filled with zeroes.

When a card carrying the virus is inserted into a voting
machine and the machine is switched on or rebooted, the
machine’s existing bootloader interprets the fboot.nb0
file as a bootloader update and copies the contents of
the file into its on-board flash memory, replacing the ex-
isting bootloader with the malicious one. The original
bootloader does not ask for confirmation before replacing
itself. It does display a brief status message, but this is
interspersed with other normal messages displayed during
boot. These messages are visible for less than 20 seconds
and are displayed in small print at a 90 degree angle to the
viewer. After the boot messages disappear, nothing out of
the ordinary ever appears on the screen.

Once a newly infected host is rebooted, the virus boot-
loader is in control. Since the bootloader is the first code
that runs on the machine, a virus bootloader is in a position
to affect all aspects of system operation. While booting,
the virus bootloader, like the ordinary bootloader, checks
for the presence of a memory card in the first PC Card
slot. However, if it finds a bootloader software update on
the card, it pretends to perform a bootloader update by
printing out the appropriate messages, but actually does
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nothing.11 Thus, once a machine has been infected, the
only way to remove the virus bootloader is to restore the
machine’s state using an EPROM-resident bootloader.

If a memory card is present, the virus bootloader copies
itself to the card as a file named fboot.nb0 so that it
can spread to other machines. If the card already contains
a file with that name, the bootloader replaces it. Con-
sequently, if a service technician performing bootloader
updates tries to update an infected machine using a card
containing an fboot.nb0 file, the infected machine will
not be updated (although it will pretend to be), and all sub-
sequent machines that the technician tries to update using
the same card will receive the virus bootloader instead of
the updated one. Similarly, updates to the BallotStation
software or operating system can also propagate the virus.

The malicious bootloader also copies the vote-stealing
executable to the memory card as a file named AV.EXE.
Then, immediately before starting Windows, the virus
bootloader scans the region of RAM occupied by the op-
erating system image (0x8C080000–0x8C67FFFF) for
the hard-coded string in the taskman.exe binary
that points to the BallotStation executable \FFX\Bin\
BallotStation.exe and replaces it with \Storage
Card\AV.EXE. Consequently, when Windows starts,
taskman.exe will launch the demonstration vote-
stealing application instead of BallotStation.

When the demonstration vote-stealing application on
the memory card starts, it first renames the legitimate Bal-
lotStation executable to \FFX\Bin\AccuVote.exe,
and then it copies itself to the machine’s on-board flash
memory with the name \FFX\Bin\BallotStation.
exe. It adopts the name of the BallotStation executable
so it will still run at start-up even if the machine is booted
without a memory card in the first PC Card slot. Next, it
copies the malicious bootloader image from the card to
the on-board flash . Thereafter, the software periodically
checks whether an uninfected memory card is present in
the machine, and, if so, it copies the virus files onto the
card so that other machines where the card is used will
become infected. Finally, the vote-stealing application
runs in the background, changing votes in the manner
described in Section 4.2.

11In order to avoid printing out fake update messages when the copy
of fboot.nb0 on the card was put there by the virus bootloader itself,
whenever the virus bootloader copies itself to a card, it sets the hid-
den, system, and read-only FAT attributes of the resulting fboot.nb0
file. Then, when the virus bootloader checks for the presence of the
fboot.nb0 file on the card, it only prints out fake update messages
if the file does not have those attributes. Alternatively, the virus boot-
loader could identify copies of itself by examining the contents of the
fboot.nb0 file for some characteristic bit string.

4.4 Demo Denial-of-Service Attack

To illustrate how malicious software running on an
AccuVote-TS could launch a denial-of-service (DoS) at-
tack, we developed a demonstration attack program that,
on command, erases the contents of both the currently-
inserted memory card and the machine’s on-board flash
memory. This attack not only destroys all records of
the election currently in progress (both the primary and
backup copies), but also renders the machine inoperable
until a service technician has the opportunity to dismantle
it and restore its configuration.

The demonstration DoS program is comprised of a user-
space Windows CE executable that triggers the attack and
a malicious bootloader that functions like an ordinary boot-
loader, except that upon receiving the appropriate signal,
it completely erases the currently-inserted memory card
and the machine’s on-board flash memory. The user-space
trigger program works by first writing a special value to
a part of the machine’s on-board flash memory that is
accessible from user-space programs and then crashing
the machine by invoking the PowerOffSystem() Win-
dows CE API call. The PowerOffSystem() API is
supposed to put the system in a low-power “sleep” mode
from which it can later “wake-up,” but when this API is
invoked on an AccuVote-TS, the machine simply crashes.
When the machine is rebooted (which must be done man-
ually), the malicious bootloader notices that the special
value has been written to the machine’s on-board flash
memory. On this signal, it completely erases the contents
of both the currently-inserted memory card and the ma-
chine’s on-board flash memory. In so doing, the malicious
bootloader destroys all of the data, software, and file sys-
tem formatting on both the memory card and the on-board
flash memory.

In order to account for the possibility that the mali-
cious bootloader never gets a chance to completely erase
both storage media or that the memory card is removed
before the machine is rebooted, the user-space trigger
program deletes as much as it can before crashing the
machine. It deletes all of the files on the memory card and
on the machine’s on-board \FFX file system including
both the primary and backup copies of the election results
(election.brs), the audit logs (election.adt),
and the BallotStation executable. When it deletes these
files, it overwrites each of them with garbage data to make
it less likely that the files will ever be recovered.

While our demonstration DoS attack is triggered by a
user’s command, a real attacker could create malicious
software that only triggers the above attack on a specific
date and time, such as on election day. An attacker could
also design the attack to launch in response to a specific
trend in voting during an election, such as an apparent
victory for a particular candidate. Like a vote-stealing
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attack, a DoS attack could be spread by a virus.

5 Mitigation

The vulnerabilities that we have described can be miti-
gated, to some extent, by changing voting machine de-
signs and election procedures. In this section we discuss
several mitigation strategies and their limitations.

5.1 Software and Hardware Modifications

The AccuVote-TS machine is vulnerable to computer
viruses because it automatically loads and runs code found
on memory cards without authenticating it. Its software
could be redesigned to inhibit the spread of viruses, how-
ever. One approach would be to digitally sign all software
updates and have the machine’s software verify the sig-
nature of each update before installing it. Such a change
would ensure that only updates signed by the manufacturer
or another trusted certifying authority could be loaded.12

It would also be helpful to require the person using the
machine to confirm any software updates. Confirmation
of updates would not prevent a malicious person with
physical access to the machine from loading an update,
but at least it would make the accidental spread of a virus
less likely while the machine was being used by honest
election officials.

While redesigning the voting machine’s software can
help mitigate some of the security problems that we iden-
tify, there are other problems inherent in the AccuVote-TS
hardware architecture that cannot be addressed by soft-
ware changes. For example, there is nothing to stop an
adversary who has physical access to the machine from
booting and installing his own malicious software by re-
placing the socketed EPROM chip on the motherboard.
Furthermore, because all of the machine’s state is kept
in rewritable storage (RAM, flash memory, or a memory
card), it is impossible to create tamper-proof logs, records,
and counters. In addition, as is the case with ordinary
PCs, it is difficult to determine with certainty that the ma-
chine is actually running the software that it is supposed
to run. Rootkit techniques [16] and virtualization tech-
nologies [21], which are often used to conceal malware
in the PC setting, could be adapted for use on the voting
machines.

Researchers have proposed various strategies for build-
ing specialized hardware capable of maintaining tamper-
proof and tamper-evident logs, records, and counters
(e.g., [37]), as well as software strategies that provide

12Adding signatures would not be effective if a machine has already
been infected with malicious code; machines would need to be booted
from EPROM and completely restored to a known state before their
software were updated to a version that checked signatures.

more limited protection (e.g., [33]). Although such meth-
ods could prevent attacks that aim to alter votes after they
have been recorded, they could not prevent malicious code
from changing future votes by altering data before it is
sent to the storage device.

Assuring a computer’s software configuration is also a
notoriously difficult problem, and research has focused
on mechanisms to ensure that only approved code can
boot [1] or that a machine can prove to a remote observer
that it is running certain code [37]. For example, commer-
cial systems such as Microsoft’s Xbox game console have
incorporated mechanisms to try to resist modification of
the boot code or operating system, but they have not been
entirely successful [17]. Although mechanisms of this
type are imperfect and remain subjects of active research,
they seem appropriate for voting machines because they
offer some level of assurance against malicious code injec-
tion. It is somewhat discouraging to see voting machine
designers spend much less effort on this issue than game
console designers.

While changes to the hardware and software of voting
machines can reduce the threats of malicious code injec-
tion and log tampering, no purely technical solution can
eliminate these problems.

5.2 Physical Access Controls

Despite the best efforts of hardware and software design-
ers, any physical access to a computer still raises the pos-
sibility of malicious code installation, so election officials
should limit access to voting machines’ internals, their
memory cards, and their memory card slots to the extent
possible.

There is some benefit in sealing the machine’s case,
memory card, and card bay door with individually num-
bered tamper-evident seals, in the hope of detecting illicit
accesses to these areas. While these measures may expose
some classes of attacks, they make denial-of-service at-
tacks easier. Suppose, for example, that a malicious voter
cuts a seal while an election is in progress. If machines
with broken seals are treated as completely untrustworthy,
then cutting the seal is itself an effective denial-of-service
attack. If broken seals are usually ignored when every-
thing else seems to be in order, then an attacker has a
good chance of successfully inserting malicious code that
cleans up after itself. There seems to be no fully satisfac-
tory compromise point between these two extremes.

Even leaving aside the possibility that voters will de-
liberately break seals, broken seals are an unfortunately
common occurrence. The most comprehensive study of
AccuVote DRE election processes in practice examined
the May 2006 primary election in Cuyahoga County, Ohio,
which used AccuVote-TSx machines. The study found
that more than 15% of polling places reported at least one
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problem with seals [13].
The available evidence is that machines and memory

cards are not handled with anything approaching the nec-
essary level of care. For example, the Cuyahoga County
study [13] reported many procedural weaknesses: “A lack
of inventory control and gaps in the chain of custody of
mission critical assets (i.e. DRE memory cards, [DREs],
. . . )” (p. 103); “the systems of seals, signatures and other
security features of the. . . machine memory cards were not
implemented on a consistent basis” (p. 109); “It appears
that memory cards are regularly removed and re-inserted
when a DRE becomes out-of-service. Security tabs are
broken and no log of this remove and replace activity is
maintained. . . There is no indication that a record compar-
ing memory card to DRE serial number is kept” (p. 138);
“Security seals are not checked for integrity at the end of
Election Day, nor are they matched with a deployment
list of Security seal serial numbers. There is no attempt
to reconcile memory cards intended for the precinct with
memory cards removed from the DREs at the end of the
day. . . Therefore, it is unknown whether these memory
cards were tampered with during Election Day” (p. 139);
“There is no established chain of custody during the trans-
fer of the memory cards. . . from the vote center to the
BOE [Board of Elections]” (p. 140); “Security seals are
collected upon return to the BOE, but these serial numbers
are neither logged nor checked against the original secu-
rity seal serial numbers deployed with the memory cards.
Therefore, it is unknown whether these memory cards
were tampered with during transport to the BOE from
the polling location” (p. 140). These problems require
immediate attention from election officials.

Security seals do some good, but it is not a solution
simply to assume that seals will always be used, always be
checked, and never be broken. Inevitably, some seals will
be missing or broken without an explanation, providing
potential cover for the insertion of malicious code or a
voting machine virus.

5.3 Effective Parallel Testing

In parallel testing, election officials choose some voting
machines at random and set them aside, casting simulated
votes on them throughout election day and verifying at the
end of the election that the machines counted the simulated
votes correctly. The goal of parallel testing is to trigger
and detect any vote-stealing software that may be installed
on the machines.

A challenge in parallel testing is how to make the simu-
lated voting pattern realistic. If the pattern is unrealistic in
some respect—if, say, the distribution of votes throughout
the day doesn’t match what a real voting machine would
see—then vote-stealing software may be able to tell the
difference between a real election and parallel testing, al-

lowing the software to steal votes in the real election while
leaving results unchanged in parallel testing.

Parallel testing is also vulnerable to a “secret knock”
attack by a testing insider. Generally, parallel tests are
carried out by representatives from all political parties
to ensure impartiality. However, if one representative
has placed vote altering code on the machines, she could
disable the code on the machine being tested by issuing
a surreptitious command. For example, the code might
watch for a specific sequence of touches in a normally
unused area of the screen and deactivate its vote alter-
ing function in response. Preventing this kind of attack
requires carefully scripting the testing procedure.

Alternatively, a secret knock might be used to activate
malicious code. In this scheme, malicious voters would
perform the secret knock on the machines being used to
collect real votes, or a malicious election worker would
perform it surreptitiously when setting up the machines,
and vote-stealing software would wait for this secret knock
before operating. Machines chosen for parallel testing
would not see the secret knock and so would count votes
honestly. This approach has the drawback (for the attacker)
of requiring a significant number of malicious voters or
a malicious poll worker to participate, though these par-
ticipants would not have to know all the details of the
attack.

These possibilities reduce the usefulness of parallel test-
ing in practice, but we think it can still be a worthwhile
precaution when conducted according to rigorously con-
trolled procedures.

5.4 Effective Whole-System Certification

Despite their very serious security flaws, the Diebold
DREs were certified according to federal and state stan-
dards. This demonstrates that the certification processes
are deficient. The Federal Election Commission’s 2002
Voting System Standards [14] say relatively little about
security, seeming to focus instead on the machine’s relia-
bility if used non-maliciously.

The U.S. Election Assistance Commission issued vol-
untary voting system guidelines [38] in 2005. These are
considerably more detailed, especially in the area of se-
curity, than the FEC’s 2002 standards. Though it would
not be entirely fair to apply the 2005 guidelines to the
pre-2005 version of the AccuVote software we studied, we
do note that the AccuVote-TS hardware architecture may
make it impossible to comply with the 2005 guidelines,
in particular with the requirement to detect unauthorized
modifications to the system software (see [38], Volume I,
Section 7.4.6). In practice, a technology can be deployed
despite noncompliance with certification requirements if
the testing agencies fail to notice the problem.

In general, the certification process seems to rely more
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on testing than analysis. Testing is appropriate for some
properties of interest, such as reliability in the face of heat,
cold, and vibration, but testing is ill-suited for finding se-
curity problems. As discussed frequently in the literature,
testing can only show that a system works under specific,
predefined conditions; it generally cannot ensure that there
is no way for an attacker to achieve some goal by violating
these conditions. Only a competent and thorough security
analysis can provide any confidence that the system can
resist the full range of realistic attacks.

Weak certification would be less of a problem if in-
formation about the system’s design were more widely
available to the public. Researchers and other experts
would be able to provide valuable feedback on voting
machine designs if they had the information to do so. Ide-
ally, strong certification procedures would be coupled with
public scrutiny to provide the highest assurance.

5.5 Software-Independent Design

Although the strategies described above can contribute
to the integrity of election results, none are sufficient to
mitigate the vote-stealing attacks that we have demon-
strated. The only known method of achieving an ac-
ceptable level of security against the attacks we describe
is software-independent design. “A voting system is
software-independent if an undetected change or error
in its software cannot cause an undetectable change or
error in an election outcome [31].” In the near term, the
only practical way to make DREs software-independent
is through the use of a voter-verifiable paper audit trail
(VVPAT) coupled with random audits. The VVPAT cre-
ates a paper record, verified visually by the voter, of how
each vote was cast. This record can be either a paper ballot
that is deposited by the voter in a traditional ballot box,
or a ballot-under-glass system that keeps the paper record
within the voting machine but lets the voter see it [24]. A
VVPAT makes our vote-stealing attack detectable. In an
all-electronic system like the Diebold DREs, malicious
code can modify all of the logs and records in the machine,
thereby covering up its vote stealing, but the machine can-
not modify already created paper records, and the accuracy
of the paper records is verified by voters.

Paper trails have their own failure modes, of course. If
they are poorly implemented, or if voters do not know
how or do not bother to check them, they may have little
value [3, 13]. The real advantage of a paper trail is that its
failure modes differ significantly from those of electronic
systems, making the combination of paper and electronic
record keeping harder to defraud than either would be
alone. Requiring a would-be vote stealer to carry out
both a code-injection attack on the voting machines and
a physical ballot box stuffing attack would significantly
raise the difficulty of attacking the system.

Paper ballots are only an effective safeguard if they are
actually used to check the accuracy of the machines. This
need not be done everywhere. It is enough to choose a
small fraction of the polling places at random and verify
that the paper ballots match the electronic records there. If
the polling places to recount are chosen by a suitable ran-
dom procedure, election officials can establish with high
probability that a full comparison of paper and electronic
records would not change the election’s result. Meth-
ods for conducting these random audits are discussed by
Rivest [2] and Calandrino, et al. [6], among others.

Another limitation of VVPATs is that they cannot stop
a denial-of-service attack from spoiling an election by dis-
abling a large number of voting machines on election day.
Given this possibility, if DREs are used, it is worthwhile
to have an alternative voting technology available, such as
paper ballots.

In the future, cryptographic voting may provide an alter-
native means of achieving software-independence that of-
fers greater security than VVPATs. Cryptographic voting
systems (e.g., [32, 5]) aim not only to allow voters to ver-
ify that their votes were recorded as cast, but also to allow
them to confirm that their ballots were actually included
in the final vote totals. Currently, however, achieving ac-
ceptable usability and maintaining ballot secrecy remain
challenges for such schemes (see [19]).

6 Related Work

Several previous studies have criticized the security of the
Diebold AccuVote DRE systems. The first major study
of these machines was published in 2003 by Kohno et
al. [22], who did not have access to a machine but did
have a leaked version of the source code for BallotStation.
They found numerous security flaws in the software and
concluded that its design did not show evidence of any
sophisticated security thinking. They did not study the
AccuVote-TS’s kernel or bootloader, however.

Public concern in light of Kohno’s study led the state
of Maryland to authorize two security studies. The first
study, by SAIC, reported that the system was “at high risk
of compromise” [34]. RABA, a security consulting firm,
was hired to do another independent study of the Diebold
machines. RABA had access to a number of machines
and some technical documentation. Their study [30] was
generally consistent with Kohno’s findings, and found
some new vulnerabilities. It suggested design changes to
the Diebold system, and outlined some steps that Mary-
land might take to reduce the risk of security problems.
The state responded by adopting many of RABA’s sugges-
tions [23].

A further security assessment was commissioned by
the Ohio Secretary of State and carried out by the Com-
puware Corporation [7]. This study examined several
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DRE systems, including the AccuVote-TS running the
same version of BallotStation as our machine, and identi-
fied several high risk security problems.

In 2006, in response to reports that Harri Hursti had
found flaws in Diebold’s AccuBasic subsystem, the state
of California asked Wagner, Jefferson, and Bishop to
perform a study of AccuBasic security issues. Their re-
port [39] identified several vulnerabilities that differ from
those that we describe because the machine that we studied
lacks the AccuBasic subsystem.

Later in 2006, Hursti released a report [18] describing
several security weaknesses in the AccuVote-TS and -TSx
systems that could allow an attacker to install malicious
software by subverting the systems’ software update mech-
anisms. These weaknesses form the basis for many of the
attacks that we describe in the current study. With limited
access to the voting machines, Hursti could only confirm
that one of these weaknesses could be exploited; we show
that many of the others can be as well.

Our work builds on these previous reports. Our find-
ings generally confirm the behaviors and vulnerabilities
described by Kohno et al., RABA, and Hursti, and demon-
strate through proof-of-concept implementations that the
vulnerabilities can be exploited to implement viral attacks
and to change election results. To our knowledge, our
work is the first comprehensive, public description of these
threats to Diebold’s DREs.

Several studies discuss general issues in the construc-
tion of software-based attacks on DRE voting machines.
Kelsey [20] catalogs the attacker’s design choices; our
analysis confirms that all or nearly all of the attack options
Kelsey discusses can be carried out against the Diebold
machine we studied. The Brennan Center report [3] offers
a broader but less technical discussion; its discussion of
malicious software injection attacks is based partially on
Kelsey’s analysis.

Additionally, there is an extensive literature on elec-
tronic voting in general, which we will not attempt to
survey here.

7 Conclusion

From a computer security standpoint, DREs have much
in common with desktop PCs. Both suffer from many
of the same security and reliability problems, including
bugs, crashes, malicious software, and data tampering.
Despite years of research and enormous investment, PCs
remain vulnerable to these problems, so it is doubtful,
unfortunately, that DRE vendors will be able to overcome
them.

Nevertheless, the practical question facing public offi-
cials is whether DREs provide better security than other
election technologies, which have their own history of fail-
ure and fraud. DREs may resist small-scale fraud as well

as, or better than, older voting technologies; but DREs
are much more vulnerable to large-scale fraud. Attacks
on DREs can spread virally, they can be injected far in
advance and lurk passively until election day, and they can
alter logs to cover their tracks. Procedures designed to
control small-scale fraud are no longer sufficient—DREs
demand new safeguards.

Electronic voting machines have their advantages, but
experience with the AccuVote-TS and other paperless
DREs shows that they are prone to very serious vulner-
abilities. Making them safe, given the limitations of to-
day’s technology, will require safeguards beginning with
software-independent design and truly independent secu-
rity evaluation.
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